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Abstract. In this study, the advection equation (AE) will be solved numerically by using
the high order method based on cubic B-spline quasi-interpolation for space discretization and
second and fourth order single step method for time discretization. The pure advection test
problem is studied and the accuracy of the numerical results are measured by computing the
maximum error norm and the rate of convergence for both of the proposed methods.

Keywords: Spline; Numerical methods for PDEs; Advection equation.

AMS Subject Classi�cation: 65D07; 65N22.

1. Introduction

We consider the following one dimensional AE

ut + αux = 0, a ≤ x ≤ b (1.1)

with the boundary conditions

u(a, t) = u(b, t) = 0, t ∈ [0, T ] (1.2)

and initial condition
u(x, 0) = f(x), a ≤ x ≤ b (1.3)

in a restricted solution domain over a space/time interval [a, b]× [0, T ]. In the one dimensional
linear AE, α is the steady uniform �uid velocity and u = u(x, t) is a function of two independent
variables t and x, which generally denote time and space, respectively.
The AE is the part of well known advection di�usion equation (ADE)

ut + αux − µuxx = 0, a ≤ x ≤ b (1.4)

and they are the basis of many physical and chemical phenomena. Various numerical techniques
have been developed and compared for solving the one dimensional AE and ADE with constant
coe�cient so far including Taylor-Galerkin method [1], least-squares �nite element method [2],
the Galerkin �nite element method [3], Weighted �nite di�erence methods [4], high-order �nite
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di�erence schemes [5] and di�erential quadrature methods based on B-spline functions of fourth
and �fth degrees [6].
The main idea of using this method is to obtain high-order approximate solution for AE. This
study presents high order numerical method for the AE based on the cubic B-spline quasi-
interpolation for space discretization and second and fourth order single step method for time
discretization. The structure of the study is as follows. In the next section, after the time
discretization of the AE is performed by using higher accurate �nite di�erence method, a cubic
B-spline quasi-interpolation for space discretization is used to obtain a system of algebraic
equation. In the numerical experiment section, proposed methods are tested for the test problem
and �nally, a summary of main �ndings of the work is presented in the last section.

2. Application of the Method

The space interval [a, b] is divided into uniformly sized �nite subelements of equal length h at
the knots

{xm = a+mh, m = 0, . . . , N}
where h = (b− a)/N and xN = b. For computational work, the space-time plane is discretized
by grids with the time step k and space step h. The exact solution of the unknown function at
the grid points is denoted by

u(xm, tn) = un
m, m = 0, 1, . . . , N ; n = 0, 1, 2, . . .

where xm = a +mh, tn = nk and the notation Un
m is used to represent the numerical value of

un
m.

2.1. Time Discretization. Using the advection equation of the form

ut = −αux (2.1)

and the following one-step method

un+1 = un + θ1u
n+1
t + θ2u

n
t + θ3u

n+1
tt + θ4u

n
tt, (2.2)

we have the time discretization of the Eq. (2.1). Using the (2.1) then we have the following
equation:

utt = −α (ut)x = −α (−αux)x = α2uxx. (2.3)

and then using the Eqs. (2.1-2.3) in the one step method (2.2), we obtain the time discretization
form of the AE equation as

un+1 + αθ1 (ux)
n+1 − α2θ3 (uxx)

n+1 = un − αθ2 (ux)
n + α2θ4 (uxx)

n . (2.4)

2.2. Cubic B-spline Quasi Interpolants Method. The cubic B-splinesBm, m = −1, . . . , N+
1, have the following form [7, 8]:

ϕm(x) =
1

h3


(zm−2)

3 , xm−2 ≤ x < xm−1

h3 + 3h2zm−1 + 3h(zm−1)
2 − 3(zm−1)

3 , xm−1 ≤ x < xm

h3 − 3h2zm+1 + 3h(zm+1)
2 + 3(zm+1)

3 , xm ≤ x < xm+1

− (zm+2)
3 , xm+1 ≤ x < xm+2

0 otherwise

(2.5)

where zm = x − xm. The set of cubic B-splines Bm(x), m = −1, . . . , N + 1 forms a basis over
the space interval a ≤ x ≤ b [9]. Over the space interval a ≤ x ≤ b, the approximate solution
U(x, t) to the exact solution u(x, t) can be written as a combination of the cubic B-splines

U(x, t) =
N+1∑
j=−1

δjBj (2.6)
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where δj are time dependent unknown parameters. Then the cubic B-spline quasi interpolants
(QIs) can be de�ned as

Q3f =
N+3∑
j=1

µj(f)Bj (2.7)

where the coe�cients are

µ1(f) = f0

µ2(f) =
1

18
(7f0 + 18f1 − 9f2 + 2f3)

µj(f) =
1

6
(−fj−3 + 8fj−2 − fj−1) , j = 3, . . . , N + 1 (2.8)

µN+2(f) =
1

18
(2fN−3 + 18f1 − 9f2 + 2f3)

µN+3(f) = fN .

The main advantage of QIs is that they have a direct construction without solving any system
of linear equations. Using the approximation

u ≃ U =
N+3∑
j=1

µj(u)Bj, u′ ≃ U ′ =
N+3∑
j=1

µj(u)B
′
j, u′′ ≃ U ′′ =

N+3∑
j=1

µj(u)B
′′
j , (2.9)

we have the approximation for �rst and second derivatives of unknown function u as follows
([10]):

U ′(x0) =
1

h

(
−11

6
U0 + 3U1 −

3

2
U2 +

1

3
U3

)
,

U ′(x1) =
1

h

(
−1

3
U0 −

1

2
U1 + U2 −

1

6
U3

)
,

U ′(xj) =
1

h

(
1

12
Uj−2 −

2

3
Uj−1 +

2

3
Uj+1 −

1

12
Uj+2

)
, (2.10)

U ′(xN−1) =
1

h

(
1

6
UN−3 − UN−2 +

1

2
UN−1 +

1

3
UN

)
,

U ′(xN) =
1

h

(
−1

3
UN−3 +

3

2
UN−2 − 3UN−1 +

11

6
UN

)
and

U ′′(x0) =
1

h2
(2U0 − 5U1 + 4U2 − U3),

U ′′(x1) =
1

h2
(U0 − 2U1 + U2),

U ′′(xj) =
1

h2

(
−1

6
Uj−2 +

5

3
Uj−1 − 3Uj +

5

3
Uj+1 −

1

6
Uj+2

)
, (2.11)

U ′′(xN−1) =
1

h2
(UN−2 − 2UN−1 + UN),

U ′′(xN) =
1

h2
(−UN−3 + 4UN−2 − 5UN−1 + 2UN).
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Using quasi spline approximations for the �rst and the second derivatives (2.10-2.11) in the
equation (2.4) yields

Un+1
0

[
1 + αθ1

(
−11

6h

)
− α2θ3

(
2

h2

)]
+ Un+1

1

[
αθ1

(
3

h

)
− α2θ3

(
−5

h2

)]
+

Un+1
2

[
αθ1

(
−3

2h

)
− α2θ3

(
4

h2

)]
+ Un+1

3

[
αθ1

(
1

3h

)
− α2θ3

(
−1

h2

)]
=

Un
0

[
1− αθ2

(
−11

6h

)
+ α2θ4

(
2

h2

)]
+ Un

1

[
−αθ2

(
3

h

)
+ α2θ4

(
−5

h2

)]
+

Un
2

[
−αθ2

(
−3

2h

)
+ α2θ4

(
4

h2

)]
+ Un

3

[
−αθ2

(
1

3h

)
+ α2θ4

(
− 1

h2

)]
,

(2.12)

Un+1
0

[
αθ1

(
−1

3h

)
− α2θ3

(
1

h2

)]
+ Un+1

1

[
1 + αθ1

(
−1

2h

)
− α2θ3

(
−2

h2

)]
+

Un+1
2

[
αθ1

(
1

h

)
− α2θ3

(
1

h2

)]
+ Un+1

3

[
αθ1

(
−1

6h

)]
=

Un
0

[
−αθ2

(
−1

3h

)
+ α2θ4

(
1

h2

)]
+ Un

1

[
1− αθ2

(
−1

2h

)
+ α2θ4

(
−2

h2

)]
+

Un
2

[
−αθ2

(
1

h

)
+ α2θ4

(
1

h2

)]
+ Un

3

[
−αθ2

(
−1

6h

)]
,

(2.13)

Un+1
j−2

[
αθ1

(
1

12h

)
− α2θ3

(
−1

6h2

)]
+ Un+1

j−1

[
1 + αθ1

(
−2

3h

)
− α2θ3

(
5

3h2

)]
+

Un+1
j

[
1− α2θ3

(
−3

h2

)]
+

Un+1
j+1

[
αθ1

(
2

3h

)
− α2θ3

(
5

3h2

)]
+ Un+1

j+2

[
αθ1

(
−1

12h

)
− α2θ3

(
−1

6h2

)]
(2.14)

=

Un
j−2

[
−αθ2

(
1

12h

)
+ α2θ4

(
−1

6h2

)]
+ Un

j−1

[
1− αθ2

(
−2

3h

)
+ α2θ4

(
5

3h2

)]
+

Un
j

[
1 + α2θ4

(
−3

h2

)]
Un
j+1

[
−αθ2

(
2

3h

)
+ α2θ4

(
5

3h2

)]
+ Un

j+2

[
−αθ2

(
−1

12h

)
+ α2θ4

(
−1

6h2

)]
,

Un+1
N−3

[
αθ1

(
6

h

)]
+ Un+1

N−2

[
αθ1

(
−1

h

)
− α2θ3

(
1

h2

)]
+

Un+1
N−1

[
1 + αθ1

(
−1

2h

)
− α2θ3

(
−3

h2

)]
+ Un+1

N

[
αθ1

(
1

3h

)
− α2θ3

(
1

h2

)]
=

Un
N−3

[
−αθ2

(
6

h

)]
+ Un

N−2

[
−αθ2

(
−1

h

)
+ α2θ4

(
1

h2

)]
+

Un
N−1

[
1− αθ2

(
−1

2h

)
+ α2θ4

(
−3

h2

)]
+ Un

N

[
−αθ2

(
1

3h

)
+ α2θ4

(
1

h2

)]
,

(2.15)

Un+1
N−3

[
αθ1

(
−1

3h

)
− α2θ3

(
−1

h2

)]
+ Un+1

N−2

[
αθ1

(
3

2h

)
− α2θ3

(
4

h2

)]
+

Un+1
N−1

[
αθ1

(
−3

h

)
− α2θ3

(
−5

h2

)]
+ Un+1

N

[
1 + αθ1

(
11

6h

)
− α2θ3

(
2

h2

)]
=

Un
N−3

[
−αθ2

(
−1

3h

)
+ α2θ4

(
−1

h2

)]
+ Un

N−2

[
−αθ2

(
3

2h

)
+ α2θ4

(
4

h2

)]
+

Un
N−1

[
−αθ2

(
−3

h

)
+ α2θ4

(
−5

h2

)]
+ Un

N

[
1− αθ2

(
11

6h

)
+ α2θ4

(
2

h2

)]
(2.16)
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for j = 2, · · · , N−2. The above system (2.12-2.16) containsN+1 unknowns andN+1 equations.
Boundary conditions u(a, t) = u(b, t) = 0 can be applied by deleting the �rst and last equations
in the system (2.12-2.16). After initial vector

U0 = (U0
0 , . . . , U

0
N)

is found with the help of the initial condition,

Un+1 = (Un+1
0 , . . . , Un+1

N ), (n = 0, 1, . . .)

unknown vectors can be found repeatedly by solving the system (2.12-2.16) using previous
Un unknown vector. In the the system (2.12-2.16), taking θ1 = θ2 = k/2, θ3 = θ4 = 0,
yields a second order method in time known as the Crank-Nicolson method and then taking
θ1 = θ2 = k/2, θ3 = −k2/12, θ4 = k2/12, yields fourth order method in time.

3. Pure Advection Test Problem

For the pure advection test problem, accuracy of the proposed two algorithms is worked out by
measuring error norm L∞

L∞ = max
m

|um − Um| ,

and the order of convergence in time is computed by the formula

order=

log

∣∣∣∣∣ (L∞)ki
(L∞)ki+1

∣∣∣∣∣
log

∣∣∣∣ ki
ki+1

∣∣∣∣ ,

where (L∞)ki is the error norm L∞ for time step ki.
In the test problem, AE has the exact solution and initial conditions

u(x, t) = 10 exp

(
−(x− x̃0 − αt)2

2ρ2

)
, (3.1)

u(x, 0) = 10 exp

(
−(x− x̃0)

2

2ρ2

)
. (3.2)

The numerical simulation will be performed by selecting the �ow velocity α = 0.5m/s of the
wave, initial peak location x̃0 = 2km and ρ = 264 by the terminating time t = 10000s. In this
case, the wave initially located with its peak at x̃0 = 2km will move to the right in a long channel
without change in shape or size by the time t = 10000s with �ow velocity α = 0.5m/s. So the
initial condition travels from the initial position to a distance of 5km and the peak value of the
solution remains constant 10 for all time. The proposed algorithms are run until t = 10000s and
the �gures of the initial solutions and waves at t = 2000, 4000, 6000, 8000, 10000 are drawn in
Fig. 1 for the M2 with h = k = 2. It can be seen from the �gure that wave propagates without
any change in its shape.
The error norms L∞ and rate of convergence for the both proposed methods are listed in Table
1. According to the table, when time and space steps are reduced from 200 to 5, the error norms
decrease for the both presented methods. It can also be seen that the rate of convergence is
almost two for M1 and almost four for the M2. Therefore the proposed methods especially M2
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Figure 1. Waves at t = 0, 2000, 4000, 6000, 8000, 10000.

are quite satisfactory.

Method 1 Method 2
h = k L∞ Order L∞ Order
200 3.53 1.45 2.79 2.31
100 1.29 2.40 5.61×10−1 3.70
50 2.45×10−1 2.21 4.32×10−2 3.97
20 3.25×10−2 2.04 1.14×10−3 4.00
10 7.89×10−3 2.01 7.13×10−5 4.00
5 1.96×10−3 2.00 4.46×10−6 4.00
2 3.13×10−4 1.14×10−7

Absolute error (di�erence between the exact and numerical solutions) distribution at t = 10000s
is also depicted in Figs. 2 and 3 for both of the presented methods. Since the maximum error
occurs at about peak value of the wave at time t = 10000s, we can say that the e�ect of
boundary conditions is negligible for the presented both methods.

Figure 2. Absolute error for M1.

4. Conclusion

The high-order method based on Taylor series expansion for the time discretization and cubic
B-spline quasi-interpolation for the space discretization was proposed to solve numerically the
AE. The test problem was simulated well with the proposed algorithms. Consequently, the
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Figure 3. Absolute error for M2.

numerical results of this study demonstrate that the proposed fourth order single step method
in time are a remarkably successful numerical technique for solving the AE.
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