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ABSTRACT: Finding the effect of a structure with known parameters such as geometry, velocity and density 

underground can be defined as modelling. The purpose of the modelling is to determine the complex in-ground 

structure. For this, artificial seismogram models are made. Most commonly, methods based on the numerical 

solution of wave equations are used. Because in these methods, the source can be placed at any point of the 

geometry studied and instantaneous energy emanations (snap-shots) can be taken at the desired time, showing 

how the wave field moves in the ground. This study, it is aimed to examine the effect of boundary conditions in 

wave modelling with the finite difference method. For this purpose, two-dimensional scalar wave equations are 

modelled with the finite difference method (FDM) in the light of previously known theoretical knowledge, and 

how the wave field behaves in the medium using different boundary conditions is mathematically investigated. 

In the numerical solutions obtained with the program codes written in FORTRAN, Dirichlet and absorbing 

boundary conditions were used separately, and the effect of boundary conditions was revealed as snap-shot and 

artificial seismograms with the help of GRAPHER and MATLAB programs. From the findings, the response of 

the structures with smooth and simple geometry was determined with the help of seismograms and snapshots. 

First arrivals, reflections from the free surface, interfaces, edges and changes in energy can be observed well in 

the seismograms obtained as a result of the modelling made with FDM. 
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1. INTRODUCTION 
 

Boundary value problems may not have exact and implicit solutions, so an approximate solution must be 

satisfied. Approximate methods are divided into two; some of them accept approximation in the fulfilment of 

boundary conditions, but it has also a necessity for being exact; in the second group of methods, although the 

realization of the boundary conditions is certain, there is an approximation in the provision of the differential 

equation. The finite difference method is a simple method that falls into this second group and can be applied to 

almost any situation. It is based on approximating the differential equation of the problem with the value of the 

function at discrete points, taking finite differences instead of differentials. 

 

The basis of finite difference applications goes back more than two hundred years with famous scientists such as 

Daniel and Jacob Bernoulli, Leonard Euler, and Jacobi Stirling. Problems frequently encountered in application 

areas such as derivative and integration, finding inner and outer values, and fitting polynomials to numerical data 

can be solved with the finite difference approach [1,8-14]. In addition, wave equations can be calculated with 

this approach since they can be easily used in the solution of partial differential equations. In recent years, the 

developing computer technology and the fast and high-capacity computers have made numerical calculations 

more attractive and have also led to an increase in studies on finite difference approaches. 

 

Finite difference methods can be divided into two groups: the explicit approach [2, 3] and the indirect approach 

[4, 5] methods. Considering numerically the wave equation applications, in the open approach; to calculate the 

value at a spatial point in the future, values from several points from the previous time are used, and the process 

is calculated for each point in succession. However, in the indirect approach, from the values of all known 
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spatial points of the previous time, all points of the next time are found simultaneously with the matrix inversion 

method  

 

[4]. In the analysis, it is studied with approximately 500-1000 time steps. This requires to be solved many 

matrices. Since this process takes a lot of time and memory, the open approach method, which can be applied 

more easily, has been preferred in this study. 

 

While obtaining an artificial seismogram with the finite difference method, there are two different calculation 

types: homogeneous formulation and heterogeneous formulation [4,5]. In the homogeneous formulation, the 

elastic parameters are considered constant within each layer. In this case, boundary conditions between layers 

with different elastic properties must be considered [8]. In the heterogeneous formulation, these elastic properties 

must be specified at each grid point of the finite difference grid network and the boundary conditions must be 

met indirectly. Although such a formulation is very useful in modelling complex underground geometries, it 

requires more processes as the number of parameters increases. Therefore, in this study, a homogeneous 

formulation, which is easier to apply and contains fewer parameters, has been used. 

 

Wave problems are normally solved for infinite media, but in seismogram calculations, the underground model 

must be limited vertically and horizontally. If appropriate boundary conditions are not used, artificial 

discontinuities will occur in the horizontal and vertical directions. These artificial discontinuities are called 

“Boundary reflections”. These undesirable boundary reflections obscure the actual signals propagating in the 

modelled region. Therefore, infinite environments and absorbing boundary conditions are needed to prevent 

boundary reflections. For handling this, the wave equation is divided into right, left, and downward wave fields 

and the values at the boundary are determined from the plane waves going towards these boundaries. Absorbing 

boundary conditions for wave equations in FDM have been developed by many scientists [6]. Later, different 

boundary conditions were developed for Cartesian coordinates [7,8,10,12]. The advantage of Reynolds boundary 

conditions is that they are easy and understandable. 

 

 

2. MAIN RESULTS 

 
Solving the Two-Dimensional Wave Equation with FDM  

 

The two-dimensional scalar wave equation is 

1

𝑐2

𝜕2𝑢

𝜕𝑡2 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑧2  

  
(2.1) 

where 𝑡 is time, 𝑥 and 𝑧 are the distance in the horizontal and vertical directions, 𝑢 is the displacement, and 𝑐 is 

the velocity of the wave in the medium. The finite-difference representation of second-order partial derivatives is 

as follows. 

𝜕2𝑢

𝜕𝑥2 ≈
𝑢𝑖+1,𝑗,𝑘−2𝑢𝑖,𝑗,𝑘+𝑢𝑖−1,𝑗,𝑘

(∆𝑥)2   (2.2) 

𝜕2𝑢

𝜕𝑧2 ≈
𝑢𝑖,𝑗+1,𝑘−2𝑢𝑖,𝑗,𝑘+𝑢𝑖,𝑗−1,𝑘

(∆𝑧)2   

 
(2.3) 

𝜕2𝑢

𝜕𝑡2 ≈
𝑢𝑖,𝑗,𝑘+1−2𝑢𝑖,𝑗,𝑘+𝑢𝑖,𝑗,𝑘−1

(∆𝑡)2   

 
(2.4) 

Here ∆𝑡 is the time sampling interval, ∆𝑥 and ∆𝑧 are the sampling intervals in the 𝑥 and 𝑧 directions, 

respectively. 

To make the operations easier and faster, it should be taken as ∆𝑥 =  ∆𝑧. In addition, 𝑖, 𝑗, 𝑘 are indices 

corresponding to 𝑥 (expansion direction), 𝑧 (depth), and 𝑡 (time) parameters, respectively. 

 

If the finite difference equations seen in (2.2), (2.3), and (2.4) are written instead of the partial derivatives in the 

two-dimensional scalar wave equation (2.1), the following equation is obtained. 

 

1

𝑐2

𝑢𝑖,𝑗,𝑘+1−2𝑢𝑖,𝑗,𝑘+𝑢𝑖,𝑗,𝑘−1

(∆𝑡)2  =
𝑢𝑖+1,𝑗,𝑘−2𝑢𝑖,𝑗,𝑘+𝑢𝑖−1,𝑗,𝑘

(∆𝑥)2  +
𝑢𝑖,𝑗+1,𝑘−2𝑢𝑖,𝑗,𝑘+𝑢𝑖,𝑗−1,𝑘

(∆𝑧)2   

  
(2.5) 
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If this equation is rearranged by taking 𝜆 =

𝑐.Δ𝑡

Δ𝑥
 the finite difference expression of the two-dimensional wave 

equation is obtained. 

 

𝑢𝑖,𝑗,𝑘+1 = 2(1 − 2𝜆2)𝑢𝑖,𝑗,𝑘 − 𝑢𝑖,𝑗,𝑘−1 + 𝜆2(𝑢𝑖+1,𝑗,𝑘 + 𝑢𝑖−1,𝑗,𝑘 + 𝑢𝑖,𝑗+1,𝑘 + 𝑢𝑖,𝑗−1,𝑘) 

 
(2.6) 

Boundary Conditions Used in Solving the Two-Dimensional Wave Equation with FDM 

 

In this study, two different boundary conditions are used for the environment in the two-dimensional models. 

These are the Dirichlet and the absorbing boundary conditions. In the solution of the scalar wave equation, the 

displacements are assumed to be zero at the time steps Δ𝑡 = 0 and Δ𝑡 = 1 as the initial condition. These 

conditions are suitable for the model not to be reflected at the boundaries.  

𝑢𝑖,𝑗,0 = 𝑢𝑖,𝑗,1 = 0 

  
(2.7) 

Under these conditions, the two-dimensional scalar wave equation given by (2.6) will be solved for  

 

−𝑎 ≤ 𝑥 ≤ 𝑎 , 0 ≤ 𝑧 ≤ 𝑏 , and t ≥ 0  

 

These physical boundaries are shown in Figure 1. 

 

 
 

FIGURE 1 Boundaries used in solving the two-dimensional scalar wave equation 

 

Reflection at 𝑥 = ∓𝑎 boundaries is not desired. In other words, the appropriate boundary conditions for the two-

dimensional scalar wave not to be reflected at 𝑥 = ∓𝑎 and 𝑧 = 𝑏 boundaries are as follows. 

𝑢(∓𝑎, 𝑧, 𝑡) = 0, 𝑢(𝑥, 𝑏, 𝑡) = 0 𝑜𝑟 
𝜕𝑢(∓𝑎,𝑧,𝑡)

𝜕𝑥
= 0, 

𝜕𝑢(𝑥,𝑏,𝑡)

𝜕𝑥
= 0 (2.8) 

The equations seen in (2.8) are called Dirichlet boundary conditions. However, strong edge reflections are 

observed again at 𝑥 = ∓𝑎 and 𝑧 = 𝑏 boundaries. But at these limits, the reflection coefficient is in units. For 

example, if the plane wave propagation to the right is considered, (2.9) is obtained. 

𝑢 = 𝑒𝑖(𝑤𝑡−𝑘𝑥𝑐𝑜𝑠𝜃±𝑘𝑧𝑠𝑖𝑛𝜃), (0 ≤ 𝜃 ≤
𝜋

2
)  (2.9) 

Here 𝜃 is the angle that the plane wavefront makes with the 𝑥-axis, that is, the angle of incidence of the wave to 

the boundary. 

𝑢 = 𝑒𝑖(𝑤𝑡−𝑘𝑥𝑐𝑜𝑠𝜃±𝑘𝑧𝑠𝑖𝑛𝜃) + 𝑅𝑒𝑖(𝑤𝑡+𝑘𝑥𝑐𝑜𝑠𝜃±𝑘𝑧𝑠𝑖𝑛𝜃)  
 

(2.10) 

From the displacement equation at the boundary (2.10), the reflection coefficient at 𝑥 = 𝑎 can be calculated. If 

equation (2.10) is substituted in the boundary condition (2.8), the reflection coefficient |𝑅| = 1 is obtained. A 

reflection coefficient of 1 causes the wave arriving at the boundary to be reflected with the same amplitude. 

These edge reflections will obscure the true reflections. To prevent these undesirable events, the wave field is 

divided into left, right, and downward wave fields. Therefore, the boundary condition on the left, the boundary 

condition on the right, the boundary condition at the base, and the boundary condition on the free surface are 

given by the equations seen in (2.11), (2.12), (2.13), and (2.14), respectively. 
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(
1

𝑐

𝜕

𝜕𝑡
−

𝜕

𝜕𝑥
) (

𝜆

𝑐

𝜕

𝜕𝑡
−

𝜕

𝜕𝑥
) 𝑢 = 0, (𝑥 = −𝑎, 0 ≤ 𝑧 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇) (2.11) 

(
1

𝑐

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
) (

𝜆

𝑐

𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
) 𝑢 = 0, (𝑥 = 𝑎, 0 ≤ 𝑧 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇) (2.12) 

(
1

𝑐

𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
) (

𝜆

𝑐

𝜕

𝜕𝑡
+

𝜕

𝜕𝑧
) 𝑢 = 0, (−𝑎 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑧 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇) (2.13) 

𝑢 = 0, −𝑎 ≤ 𝑥 ≤ 𝑎, 𝑧 = 0, 0 ≤ 𝑡 ≤ 𝑇) (2.14) 

In these equations 𝜆 =
𝑐.Δ𝑡

Δ𝑥
 

 

If equation (2.10) is substituted in equations (2.11), (2.12), (2.13) and solved for 𝑅, the reflection coefficient 

becomes 𝑅 = 0. Equations (2.11), (2.12), (2.13) and (2.14) in terms of finite differences are obtained as follows. 

 

𝑢1,𝑗,𝑘+1 = 𝑢1,𝑗,𝑘 + 𝑢2,𝑗,𝑘 − 𝑢2,𝑗,𝑘−1+ 
𝑐.Δ𝑡

Δ𝑥
[𝑢2,𝑗,𝑘 − 𝑢1,𝑗,𝑘 − (𝑢3,𝑗,𝑘−1 − 𝑢2,𝑗,𝑘−1)], 

2 ≤ 𝑗 ≤ 𝐽, 2 ≤ 𝑘 ≤ 𝐾  

 

(2.15) 

 

𝑢𝐼+1,𝑗,𝑘+1 = 𝑢𝐼+1,𝑗,𝑘 + 𝑢𝐼,𝑗,𝑘 − 𝑢𝐼,𝑗,𝑘−1+ 
𝑐.Δ𝑡

Δ𝑥
[𝑢𝐼+1,𝑗,𝑘 − 𝑢𝐼,𝑗,𝑘 − (𝑢𝐼,𝑗,𝑘−1 − 𝑢𝐼−1,𝑗,𝑘−1)], 

2 ≤ 𝑗 ≤ 𝐽, 2 ≤ 𝑘 ≤ 𝐾  

(2.16) 

 

𝑢𝑖,𝐽+1,𝑘+1 = 𝑢1,𝐽+1,𝑘 + 𝑢2,𝐽,𝑘 − 𝑢2,𝐽,𝑘−1+ 
𝑐.Δ𝑡

Δ𝑥
[𝑢2,𝐽+1,𝑘 − 𝑢1,𝐽,𝑘 − (𝑢3,𝐽,𝑘−1 − 𝑢2,𝐽−1,𝑘−1)], 

2 ≤ 𝑗 ≤ 𝐽, 2 ≤ 𝑘 ≤ 𝐾  

 

(2.17) 

 

 

𝑢𝑖,1,𝑘+1 = 0, 2 ≤ 𝑖 ≤ 𝐼, 2 ≤ 𝑘 ≤ 𝐾 
  

 

 

(2.18) 

 

 

 

The (2.15), (2.16), (2.17) and (2.18) equations are called absorbing boundary conditions [7]. Figure 2 shows the 

geometry of Dirichlet and absorbing boundary conditions in two-dimensional models. 

 

 
 

FIGURE 2 The geometry of Dirichlet and absorbing boundary conditions in two-dimensional models 
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3. APPLICATIONS AND ILLUSTRATIVE EXAMPLES 

 
For a homogeneous medium with a depth of 480 𝑚 and a length of 480 𝑚, the velocity of the medium is 𝑐 =
1500 𝑚/𝑠 the centre frequency of the source is 30 Hz, the time sampling interval ∆t = 0.00236 s. Spatial 

sampling intervals ∆x = ∆z = h = 5m were taken for finite differences. The two-dimensional geological model 

was calculated on a 96-point grid in the horizontal and vertical directions (96𝑥96). Ricker source function is 

used as source function and placed in the middle of the geometry. In the models, it is assumed that the upper 

region is a free surface. Dirichlet boundary conditions and absorbing boundary conditions are applied as 

boundary conditions. Figure 3 shows the two-dimensional homogeneous underground model studied. 

 

 
 

FIGURE 3 Two-dimensional homogeneous underground model 

 

Limitations 

1. In the modelling in this research, it is assumed that the environment is elastic, homogeneous and isotropic.  

2. The numerical solutions of the wave equations are limited to the finite difference method.  

3. The boundary conditions used are limited to Dirichlet and absorbing boundary conditions. 

4. Modelling with FORTRAN programs based on finite-difference formulations of wave equations is limited to 

photographs and seismograms showing instantaneous energy dissipation. 
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𝑡 = 0.12 𝑠   𝑡 = 0.35 𝑠   𝑡 = 0.59 𝑠  

    
 𝑡 = 0.82 𝑠   𝑡 = 1.06 𝑠   𝑡 = 1.18 𝑠  

    
𝑡 = 1.42 𝑠   𝑡 = 1.65 𝑠   𝑡 = 1.88 𝑠  

    
 𝑡 = 2   𝑡 = 2.12 𝑠   𝑡 = 2.24 𝑠 

 
FIGURE 4 The instantaneous energy dissipations obtained using the Dirichlet boundary condition for the  

 model is shown in Figure 3 
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 𝑡 = 0.17 𝑠    𝑡 = 0.23 𝑠     

   
 𝑡 = 0.29 𝑠     𝑡 = 0.35 𝑠 

   
 𝑡 = 0.41 𝑠    𝑡 = 0.47 𝑠 
 
FIGURE 5 The instantaneous energy dissipations obtained using the absorbing boundary condition for the  

 model is shown in Figure 3 
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a) b) 

FIGURE 6 Seismograms obtained by FDM using Dirichlet boundary conditions (a) and absorbing boundary  

 conditions (b) for the model given in Figure 3 

 
The wavefront propagating in a homogeneous environment can be observed from the instantaneous energy 

dispersions in Figure 4 and Figure 5. Since the medium is two-dimensional, the waveform propagates circularly. 

Naturally, in the case of a three-dimensional medium, the wavefront will be spherical. Wavefront photographs at 

different time steps calculated for a homogeneous medium using Dirichlet boundary conditions are shown in 

Figure 4. It is seen that the wavefront is reflected from the edges when it reaches the model boundaries. It is seen 

that the waves reflected from the edges pass through each other over time and exhibit a symmetrical appearance. 

This shows that the effect of the source is the same at the points that are equidistant from the source. In Figure 5, 

considering the absorbing boundary conditions, it is seen that there is only reflection from the free surface 

(earth’s surface) and no back reflection from other edges. 

 

Figure 6. a and Figure 6. b show the seismograms obtained using Dirichlet and absorbing boundary conditions 

when the sensors are placed on the earth's surface. Since the source is a point (240, 240), the ripple from the 

source is naturally recorded by the nearest receiver first. The closest receiver is the geophone, 240 m away. In 

addition, since the speed of the medium is 1500 m/s and the distance of the source to the nearest receiver is 240 

m, the first trace is expected to reach the recorders at 240/1500=0.16 s. It is seen in the seismograms obtained in 

Figure 5. a and Figure 5. b that the first trace was recorded in 0.16 s by the geophone at a distance of 240 m. 

 

4. CONCLUSION 

 
The finite difference method is one of the most important subjects of numerical analysis, which has gained 

importance in recent years with its wide application area. In computer applications, a derivative or an integral 

cannot be calculated analytically. In this case, it is necessary to define operations in terms of calculations that the 

computer can do. These calculations and techniques form the scope of numerical analysis. The finite difference 

method consists of writing the appropriate finite difference approach instead of derivatives in differential 

equations. 

 

To calculate the seismic sections of geological models in seismic studies, wave equations containing the density 

and velocities of the rocks are used. By comparing the obtained seismic sections with the land seismograms, it is 

tried to examine the underground. It is a fact that the seismic interpretation made by relying only on the records 

obtained from the field will be insufficient. The finite difference method helps to model by calculating artificial 

seismograms of complex underground models. 

 

In this study, the two-dimensional scalar wave equation is modelled by the finite difference method. In the 

models made with wave equations, it is possible to see how the wave field spreads at any time and to place the 

source at a desired depth and distance. Depending on conditions such as stability, boundary conditions, and grid 

dispersion is as important as applying finite-difference approaches to wave equations. Therefore, these 

conditions were examined, and calculations were made by choosing the time sampling interval (∆𝑡), distance 

sampling interval (∆𝑥) and source frequency (𝑓𝑝) to be used in the models under these conditions. 
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In a homogeneous and isotropic environment, photographs and seismograms showing instantaneous energy 

dissipation were obtained as a result of modelling with FORTRAN programs based on finite-difference 

formulations of wave equations. In these seismograms, first arrivals, reflections from the free surface, interfaces, 

edges, and decreases in energy are well observed. When the absorbing boundary conditions are applied, it has 

been observed that the reflections from the base and sides of the model disappear. It is recommended to use 

different approaches in wave modelling to be revealed their effects. 
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