
E-mail address: jaromir.zahradka@upce.cz

 ∗ Corresponding Author.

J. Appl. Comp. Sci.
Received: 02/02/2022 Volume 1, Issue 1, Pages 45-52

Accepted: 19/04/2022 doi: 10.5281/zenodo.6880928

Published online: 30/06/2022 Research Article

THE TRAVELLING SALESMAN PROBLEM SOLUTION BY MIXED INTEGER

LINEAR PROGRAMMING IN MATLAB CODE

JAROMÍR ZAHRÁDKA*

*Department of Mathematics and Physics, Faculty of Electrical Engineering and

Informatics, University of Pardubice, Pardubice, Czech Republic

1. INTRODUCTION

ABSTRACT: This article introduces one more specific solution of the travelling salesman problem. The seller has

to distribute, using his truck, goods from the depot (warehouse) to n customers. Each customer point of delivery

is given by GPS coordinates. This problem can be called the travelling salesman problem. The objective of the

solution is to select the sequence of delivery points so that firstly the travel distance and subsequently the total

travel time are minimal. The seller visits all delivery points and returns to the depot. In this article, one general

solution is presented using the branch-and-bound method and by using mixed integer linear programming

implemented in Matlab code. The created algorithm can be used for any number n of customers.

Keywords : Travelling salesman problem; branch-and-bound method; mixed-integer linear programming; Matlab.

AMS Subject Classification : 68W04; 90C11, 05C20.

2. MAIN RESULTS

The travelling salesman problem (TSP) and its classical solutions are described e.g. in [1, 2, 4, 5]. Our

solution was inspired by the use of integer programming published in [7]. One implementation of the TSP solution

with Matlab programming can be found in [3].

The TSP can be defined as follows. Let 0 (.)=G V E be a connected complete oriented graph consisting of

a set of n nodes (customer locations) indexed by 0,1,...,=i n , and a set E of non-negatively weighted arcs

between each pairs of corresponding nodes of the graph 0G . The index 0=i is for the seller, and the indexes

1,...,=i n are for all customers. For easier references, let { }1,...,=I n be the set of n customers, and

{ }0 0= ÈI I . The constant 0t means the time-moment when the dealer vehicle leaves the depot. Each customer

can be visited only once at any time greater than 0t . The order of the customers visited is not limited, other than

by the requirement that the duration of the seller's journey through all customers (terminated by return to the depot)

be as short as possible. For each customer Îi I let im be the assumed service time associated with the unloading

of goods and dealing with the customer.

Let i jd be the length of the path from i - node to j - node for all 0,i j IÎ . Therefore ()
0, Î

=D i j i j I
d is

the non-negative distance matrix. The matrix D can be, in general, an asymmetric one with zeros on the places of

the main diagonal, i.e. 0i id = for each 0Îi I . It is necessary that the triangular inequalities be satisfied for

distances among nodes of graph 0G .

Instead of the distance matrix D we will use, for the solution TSP, the time matrix ()
0, Î

=C i j i j I
c . Each

element i jc represents the pure travelling time of the seller from i - node to j - one. It is assumed that if the

average speed v of the vehicle among each two nodes is used, then the driving time i jc can be expressed

mailto:jaromir.zahradka@upce.cz
https://orcid.org/0000-0002-6873-3388

J. ZAHRÁDKA

=
i j

i j

d
c

v
. In this case the travel time i jc is proportional to the distance i jd . We assume that it is given the

moment 0t when the seller’s vehicle leaves the depot.

The core of the practical TSP solution is to find the one cycle in the graph 0G which includes all nodes of

the graph and which gives the shortest total driving time. For this purpose, integer variables i jx for 0,i j IÎ are

introduced, which can only take the values 0 or 1. The variables i jx are called binary variables. Value 1i jx =

means that the arc from node i to j is included in the cycle and value 0i jx = means that the corresponding arc

is not included. For systemic reason variables, i ix are used but all are fixed by the value zero, i.e. 0iix = , for each

0

i I . Variables i jx are elements of a matrix ()
0, Î

=X i j i j I
x . The number of flow variables i jx is ()

2
1+n .

In our work we use other specific non-integer variables it , for each i I . Each it indicates the moment

when the seller leaves the i ’s customer location. By using variables it , it is guaranteed that the solution will be

correct with all nodes during only one cycle in the graph 0G . The variables it are included as n elements of the

vector ()1 2, , ... , nt t tt = . The number of all flow variables is()
2

1+ +n n .

The solution of TSP is realized like the optimal solution of a mixed-integer linear programming problem:

(),
, 0 1

1
min
X t

n n

i j i j i

i j i

c x t
n u= =

 +

 subject to (1)

0, ,i jx i j I are binary, {0,1}i jx (2)

0 0 0 0() , ,i j j i j i j j jc u t c x t t u t c m i j I+ − − + − − − − , ¹i j (3)

0 0 0 ,j j j jc x t t m j I− − − (4)

0

01,i j

j I

x i I

=
(5)

0

01,i j

i I

x j I

=
(6)

00,iix i I= (7)

00 1, ,i jx i j I (8)

0 0 ,j j jt c m t u j I+ + . (9)

In the expressed model (1) with flow variables i jx and it , the linear optimization function

, 0 1

1n n

i j i j i

i j i

c x t
n u= =

 +

 (10)

is minimized.

THE TRAVELLING SALESMAN PROBLEM SOLUTION BY MIXED INTEGER LINEAR

PROGRAMMING IN MATLAB CODE

47

The first (main) part
, 0

n

i j i j

i j

c x
=

 of the minimized optimization function guarantees finding the cycle which takes

the minimum amount of time. Due to the assumed constant average speed v , the total travel length is also minimal.

In the second (marginal) part
1

1n

i

i

t
n u=

 of the optimization function, the coefficients of the variables it are very

small due to the very large value of the constant u which is defined as

0

0

1 0

max
n n

i i j
i I

i j

u t m c

= =

= + + . (11)

The second part of the optimization function does not change the optimal solution for the variables i jx , while the

sum of time variables it are minimized. This means that the optimization process only provides solutions for

variables it so that no waiting times are included when the seller travels between any two customers.

The constraint (3) defines ()1-n n conditions between flow variables i jx and departure times it , jt , for

,i j I . In the case 0=i jx , the inequality (3) expresses the relationship 0 0j j j it t c m t u + + + − . Due to the

large enough value of u , the right side of inequality (3) can be only non-positive and the relationship is satisfied.

In the case 1=i jx , the inequality (3) is reduced to , ,i i j j jt c m t i j I+ + . This expresses that the

departure time from the node j has to be greater than or equal to the sum of the departure time it (from node i),

the travelling time i jc (from node i to node j) and the service time jm in the node j . The created optimization

process ensures that, in the case of 1i jx = , the condition (3) is satisfied only by the equation i i j j jt c m t+ + = .

The constraint (4) defines relations between flow variables 0 jx and jt , j I . In the case 0 0jx = the

inequality expresses the relationship 0 ,+ £ Îj jt m t j I . Departure time from the node j is greater than or equal

to the sum of departure time 0t and service time jm . In the case 0 1=jx the inequality (4) expresses the

relationship 0 0+ + £j j jt c m t . Departure time from the node j is greater than or equal to sum of departure time

0t from the depot, travelling time 0 jc from depot to node j and service time jm .

Statements (5) and (6) declare ()2 1+n equation constrains, which express that only one arc leads from

each node and only one arc leads to each node. Statement (7) declares that each 0=iix .

 The inequalities in (10) declare that the lower and upper bounds of variables i jx are 0 and 1. The

inequalities in (11) express the bounds of flow variables (departure times) , Îjt j I .

In MATLAB system the index 0 can not to be used, therefore all vector and matrix variables use the smallest

index 1. The distance matrix is transferred to the Matlab environment as matrix D, with the row and column indices

i,j = 1,2, … , n+1, where each component D(i,j) corresponds to the distance 1 1- -i jd of the nodes 1-i

and 1-j . Similarly each component C(i,j) of the time matrix corresponds to the driving time 1 1- -i jc from the

node 1-i to the 1-j one.

Our procedure for solving TSP in the Matlab code is contained in the M-function TSP_SOLVER.m, which

has 83 rows and is fully listed as an APPENDIX at the end of the article. In the first line the mentioned M-function

is declared. The input variables are n - number of customers, D – distance matrix, v – velocity of the vehicle, t0 –

the moment when the seller leaves the depot and m – row vector with customer service duration times. The main

output variable is the column vector X of flow variables, which is obtained as an output of the optimization via the

mixed-integer linear programming by the command intlinprog.

The mixed-integer linear programming problem is generally expressed by

()

min

.

T

X eq eq

b b

X intcon are integers

A X b
f X subject to

A X b

l X u

 =

 (12)

J. ZAHRÁDKA

The solver for this problem is the command X=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub) in

Matlab code (you can see it on the APPENDIX row No. 55). A more detailed explanation of the specified

command is available in the User’s Guide [6].

For the solution of TSP via the intlinprog command, all flow variables are arranged in a column vector

X with ()
2

1+ +n n components. First ()
2

1+n flow variables are integer variables i jx , and each variable i jx ,

0,i j I is represented by Matlab flow variable X(i*(n+1)+j+1,1). The last n flow variables of X are the

seller's departure times 1 2, ,..., nt t t , and each variable it , i I is represented by X((n+1)^2+i,1).

The objective function of the mixed-integer linear programming problem (12) is, in the Matlab code,

expressed like f’*X, where f is a column vector of coefficients with ()
2

1+ +n n components. The first ()
2

1+n

components are elements of the time matrix C so that f((i-1)*(n+1)+j,1)=C(i,j), i,j { }1,2,..., 1Î +n .

For the last n components of f we use the value
1

×n u
 according to relation (10) (the APPENDIX, row No. 3).

The vector intcon in the command intlinprog specifies the indexes of flow variables, which are taken

integers, i.e. intcon=1:(n+1)^2 (row No. 53). They are first ()
2

1+n flow variables, i.e. i jx , 0,i j I .

The constraints (3) and (4) give the system of 2n linear inequalities with ()
2

1n n+ + variables. The matrix

A of system inequalities and the column vector b of right sides are created for any number of customers n in

Matlab code, statements on lines No. 4 to 16 in the APPENDIX.

The constraints (5), (6) and (7) give the system of 2n linear equalities with ()
2

1+ +n n variables. The

matrix Aeq of system equalities and the column vector beq of right sides are created for any number of customers

n in the Matlab code, statements on lines No. 17 to 33 in the APPENDIX.

Another two input variables of the intlinprog command (line No. 54) are the column vectors lb and ub

of lower and upper bounds of all flow variables. With respect to the relations (7), (8), (9) the components of vectors

lb and ub are filled by commands on lines No. 34 to 51 in the APPENDIX.

The maximum optimization time in the intlinprog command can be set with the options command by

specifying the number of seconds after the 'MaxTime' parameter (see line 53 of the APPENDIX). If the

intlinprog program terminates before the optimization is complete, the program offers a solution that may not

be optimal, but that is close to the optimal solution. Other configurable parameters of the intlinprog command

can be set similarly, you can see in the User’s Guide [6].

After optimization via the intlinprog command, the TSP solution is stored in the flow variables. The

variables X(k,1), k () 2
1,2,..., 1n + , which take the value 1, determine the arcs of the shortest travel cycle. The

last n values of flow variables indicate times when the seller leaves individual customers.

The commands of function TSP_SOLVER.m from line No. 56 to 68 allow the creation of a sequence of

cycle nodes, i.e. the CYCLE vector. The first item of the CYCLE vector is the number 0 – depot, and the other n

items are the sequence of customer numbers, and the last item is supplemented by the number 0 with regard to the

fact that the seller returns to the depot.

The Matlab variables X(k,1), k () () () 2 2 2
1 1, 1 2,..., 1n n n n + + + + + + are the departure times of the

seller from the customer (node) number k at the optimal cycle. The vector of the departure times t is created by

a for-cycle command on lines No. 69, 70 and 71. The time tRet of the seller’s arrival back to the depot after the

visit to all customers is calculated by command on the line No. 72, and the total duration of the seller's business

trip AllWorkTime is calculated on line No. 73.

For practical use, commands on lines No. 74 and 75 create a vector tArr of arrival times to the nodes in

the order given by items of the vector CYCLE. The exception is the first item of the tArr, which means the

departure time from the depot, i.e. time t0. The last item of the vector tArr means the time when the seller returns

to the depot, i.e. tRet. The total distance TotDist travelled by the seller on his most advantageous business trip

is calculated on lines No. 76 to 83 by using the distance matrix elements.

The input variables for the M-function TSP_SOLVER and its execution must be done using a special startup

M-script that contains commands for drawing the output circle (the example you can see in Figure 1). The startup

script in Matlab code is not listed in this article.

https://localhost:31515/static/help/optim/ug/intlinprog.html?searchHighlight=intlinprog&searchResultIndex=1#d117e102699

THE TRAVELLING SALESMAN PROBLEM SOLUTION BY MIXED INTEGER LINEAR

PROGRAMMING IN MATLAB CODE

49

3. APPLICATION AND ILLUSTRATIVE EXAMPLE

To illustrate the program we have created, we assume a seller and twelve customers. The GPS coordinates

of the seller’s depot are 0
0 14.288=E (the eastern longitude) and 0

0 49.447=N (the northern latitude). The GPS

coordinates iE , iN and the service times im of customers you can find in TABLE 1.

TABLE 1 The GPS coordinates and the service times of the customers

 Customer

i 1 2 3 4 5 6 7 8 9 10 11 12

iE

(⁰)
14.415 14.465 14.764 14.818 14.100 14.178 14.360 14.057 14.522 14.336 14.176 14.209

iN

(⁰)
49.036 49.121 49.027 49.221 49.007 49.449 49.098 49.047 49.154 49.228 49.051 49.498

im

(min)
11 13 9 13 13 18 18 17 9 9 18 20

The distance between two customer locations (nodes) is their orthonormal distance on the sphere multiplied

by a factor of 1.25. The orthonormal distance is calculated with a sphere radius R = 6371 km (mean radius of the

Earth). All taken distances are included in the symmetric distance matrix D in TABLE 2.

TABLE 2 The distance matrix D

Distance

(km)

j

0 1 2 3 4 5 6 7 8 9 10 11 12

i

0 0 58.09 50.32 87.01 79.69 64.79 15.29 48.05 62.74 51.12 30.24 55.58 12.95

1 58.09 0 13.39 48.52 61.29 43.96 64.65 11.32 49.78 21.76 28.09 33.28 68.49

2 50.32 13.39 0 43.44 50.87 53.01 59.52 14.92 57.58 9.08 23.00 41.26 62.00

3 87.01 48.52 43.44 0 27.13 92.33 99.30 56.96 98.31 37.72 65.35 81.79 99.84

4 79.69 61.29 50.87 27.13 0 103.87 94.10 65.77 108.34 42.12 67.00 92.12 92.49

5 64.79 43.96 53.01 92.33 103.87 0 60.55 38.16 8.05 61.91 44.30 12.11 67.89

6 15.29 64.65 59.52 99.30 94.10 60.55 0 53.62 56.74 62.16 36.99 53.64 7.88

7 48.05 11.32 14.92 56.96 65.77 38.16 53.62 0 42.67 23.75 17.82 26.35 57.82

8 62.74 49.78 57.58 98.31 108.34 8.05 56.74 42.67 0 66.22 45.81 16.55 64.36

9 51.12 21.76 9.08 37.72 42.12 61.91 62.16 23.75 66.22 0 27.71 50.05 63.55

10 30.24 28.09 23.00 65.35 67.00 44.30 36.99 17.82 45.81 27.71 0 32.61 40.43

11 55.58 33..28 41.26 81.79 92.12 12.11 53.64 26.35 16.55 50.05 32.61 0 60.41

12 12.95 68.49 62.00 99.84 92.49 67.89 7.88 57.82 64.36 63.55 40.43 60.41 0

By running the function TSP_SOLVER_Z.m with the above chosen parameters, the optimal solution was

found. The shortest cycle is given with a node sequence 0-12-6-8-5-11-7-1-3-4-9-2-10-0. The calculated seller’s

departure times
idept from customers, and arrival times

iarrt to customers are in TABLE 3.

TABLE 3 The arrive and departure times of the seller

Times Depot Customers ranking in minimal cycle Depot

i 0 12 6 8 5 11 7 1 3 4 9 2 10 0

ia r rt - 4:12 4:40 5:55 6:20 6:45 7:30 7:59 8:58 9:35 10:30 10:48 11:24 12:03

idept 4:00 4:32 4:51 6:12 6:33 7:03 7:48 8:10 9:07 9:48 10:39 14:42 11:33 -

The found cycle of minimal length is drawn in Figure 1. The total travelled distance by the seller vehicle is

315.50 km and the total time of a business trip is 8 hours and 3 minutes.

However, due to the symmetry of the distance matrix D , there is another equivalent solution that gives the

same minimum travel distance and minimum driving time. This is the cycle with the opposite orientation of all

arcs, i.e. the cycle 0-10-2-9-4-3-1-7-11-5-8-6-12-0.

J. ZAHRÁDKA

FIGURE 1 The minimal length cycle of the seller around all customers

4. CONCLUSION

This paper proposes a practical solution of the travelling salesman problem for any number n-customers in

Matlab code. The TSP is formulated as a mixed-integer linear programming problem with a new approach, which

respects the given matrix of distances and service duration times of customers, as well as the constant speed of the

seller’s movement. The solution lies in minimizing of the seller's trip duration that leads across all nodes

(customers). The constant speed of seller’s movement is assumed, therefore the total distance travelled is also the

minimum. The created objective function guarantees that the total travelled distance and the total travelled time of

the seller are minimal.

The main result of this article is the created M-script, which allows the TSP to be solved generally for any

number of n customers. The created M-script is practically usable on a common personal computer for up to 30

customers. For 30 customers, the calculation takes less than 85 minutes, and for up to 19 customers, the calculation

takes less then 20 seconds. With the growing number of customers, the time to find the optimal solution increases.

On the line No. 53 of the M-function it is possible to set the maximum running time limit of the command

intlinprog by specifying the number of seconds in the parameter 'MaxTime'. If the optimal solution is not

found within the given time limit, the Matlab offers an ongoing solution that was found during the optimization

process. The created M-function was successfully tested for a maximum of 37 customers on a standard PC. In this

case the optimal solution was found after 8 hours.

Acknowledgement. The author would like to thank the anonymous reviewers for their valuable comments

and suggestions for improving the paper.

Declaration of Competing Interests. The author declare that he has no known financial interests or personal

relationships that conflict with each other affecting the study reported in this article.

REFERENCES

[1] J. J. Bentley, Fast Algorithms for Geometric Travelling Salesman Problems, ORSA Journal on Computing, (4) 4,1992.
[2] G. Davendra et al, Travelling Salesman Problem, Theory and Applications, Rieaka: IN Tech, 2010.
[3] K. P. Gradle and Y. U. Muley. Travelling Salesman with MATLAB programming, International Journal of Advaces in Applied
Mathematics and Mechanics, (3) 2 , 258-266, 2015.
[4] G. Gutin and A. P. Punnen, The Travelling Salesman Problem and Its Variations, Springer Science+Business Media, LLC, New York,
2007.
[5] R. Jonak, Z. Smutny, M. Simunek and M. Dolezel, Rout and Travel Time Optimization for Delivery and Utility Services, Acta
Informatica Pragensia, (2) 9 , 200-209, Prague, 2020.
[6] MathWorks. Inc., Optimization ToolboxTM. User’s Guide, Natick, 2020.
[7] W. L. Winston, Operations Research, Applications and Algorithms, Duxbury Press, Duxbury, 1994.

THE TRAVELLING SALESMAN PROBLEM SOLUTION BY MIXED INTEGER LINEAR

PROGRAMMING IN MATLAB CODE

51

APPENDIX

 1: function [X, CYCLE, TotDist, AllWorkTime, tArr] = TSP_SOLVER(n, D, v, t0, m)

 2: C=D/60; CT=C'; u=t0+sum(max(CT))+sum(m(1:n));

 3: f=[CT(:); ones(n,1)/u/n];

 4: p=(n+1)*(n+1); A=zeros(n^2,p+n); k=0;

 5: for i=1:n

 6: for j=1:n

 7: if i~=j; k=k+1;

 8: A(k,(n+1)*i+1+j)=C(i+1,j+1)+u-t0-C(1,j+1);

 9: A(k,p+i)=1; A(k,p+j)=-1;

10: b(k,1)=u-t0-C(1,j+1)-m(j);

11: end

12: end

13: end

14: for i=1:n

15: k=k+1; A(k,1+i)=C(1,1+i); A(k,p+i)=-1; b(k,1)=t0-m(i);

16: end

17: Aeq=zeros(3*n+3,(n+1)^2+n);

18: for i=1:n+1

19: for j=1:n+1

20: Aeq(i,(i-1)*(n+1)+j)=1;

21: end

22: Aeq(i,(i-1)*(n+1)+i)=0;

23: beq(i,1)=1;

24: end

25: for i=1:n+1

26: for j=1:n+1

27: Aeq(n+1+i,(j-1)*(n+1)+i)=1;

28: end

29: Aeq(n+1+i,(i-1)*(n+1)+i)=0; beq(n+1+i,1)=1;

30: end

31: for i=1:n+1

32: Aeq(2*n+2+i,(i-1)*(n+1)+i)=1; beq(2*n+2+i,1)=0;

33: end

34: lb = zeros(p,1);

35: for i=1:n

36: lb(p+i,1)=t0+C(1,1+i)+m(i);

37: end

38: k=0;

39: for i=1:n+1

40: for j=1:n+1

41: k=k+1;

42: if i==j

43: ub(k,1)=0;

44: else

45: ub(k,1)=1;

46: end

47: end

48: end

49: for i=1:n

50: ub(p+i,1)=u;

51: end

52: intcon=1:(n+1)^2;

53: options=optimoptions('intlinprog', 'MaxTime', 300, 'MaxNodes', 3000000);

J. ZAHRÁDKA

54: X=intlinprog(f, intcon, A, b, Aeq, beq, lb, ub, [], options);

55: X(1:p)=round(X(1:p))

56: for i=2:n+1

57: if X(i)==1

58: CYCLE=0;

59: Nok=2; CYCLE(Nok)=i-1; TEST=i; break

60: end

61: end

62: while TEST~=1

63: for j=1:n+1

64: if X((CYCLE(Nok))*(n+1)+j)==1

65: Nok=Nok+1; CYCLE(Nok)=j-1; TEST=j; break

66: end

67: end

68: end

69: for i=1:n

70: t(i)=X(p+i);

71: end

72: tRet=t(CYCLE(end-1))+C(CYCLE(end-1)+1,1)

73: AllWorkTime=tRet-t0;

74: tArr=[t0, t(CYCLE(2:end-1))-(m(CYCLE(2:end-1))), tRet],

75: tArr=hours(tArr), tArr.Format='hh:mm'

76: TotDist=0;

77: for i=1:(n+1)

78: for j=1:(n+1)

79: if X((n+1)*(i-1)+j)==1

80: TotDist=TotDist+D(i,j); break

81: end

82: end

83: end

